
Reyna Martinez-DeLuna
The expression of intermediate filament proteins (IFPs) in glial cells has been implicated in the inability of some vertebrates to regenerate the central nervous system. Taking advantage of the ability of Xenopus laevis to regenerate the retina, I will use the XOPNTR transgenic line, a model of rod degeneration and regeneration, to determine the role of IFPs in these two processes. Specifically, I will investigate if the IFPs glial fibrillary acidic protein (GFAP) and Vimentin are important regulators of retinal degeneration and the ability of the Xenopus retina to regenerate. The results of this study will determine if upregulation of GFAP and Vimentin IFPs is required for Müller cell reactivity, retinal degeneration and restricting the regenerative capacity of the retina.